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Abstract—We introduce a novel adaptive neuro-fuzzy archi-
tecture based on the framework of Multiple Instance Fuzzy
Inference. The new architecture called Multiple Instance-ANFIS
(MI-ANFIS), is an extension of the standard Adaptive Neuro
Fuzzy Inference System (ANFIS) [1] that is designed to handle
reasoning with multiple instances (bags of instances) as input and
capable of learning from ambiguously labeled data. In multiple
instance problems the training data is ambiguously labeled.
Instances are grouped into bags, labels of bags are known but not
those of individual instances. Multiple Instance Learning (MIL)
deals with learning a classifier at the bag level. Over the years
many solutions to this problem have been proposed. However,
no MIL formulation employing fuzzy inference exists in the
literature. In this paper, we develop MI-ANIFS that generalizes
ANFIS inference systems to account for ambiguity and reason
with multiple instances. We also develop a learning algorithm to
learn the parameters of MI-ANFIS. The proposed MI-ANFIS is
tested and validated using a synthetic and benchmark data sets
suitable for MIL problems.

I. INTRODUCTION

THE standard Adaptive Neuro-Fuzzy Inference System
(ANFIS)[1] is a universal approximator that combines

the learning and modeling power of neural networks and
fuzzy logic into an adaptive inference system. Neural networks
deal with imprecise data by training, while fuzzy logic can
deal with the uncertainty of human cognition [2]. ANFIS
offers an alternative to rules’ identification. While Mamdani
[3] and Sugeno [4] fuzzy systems identify rules based on
intuition, ANFIS, in contrast, jointly learns the optimal input
space partition and the optimal output parameters through
optimization. ANFIS is considered a hybrid intelligent system
and it provides a systematic approach to learn fuzzy rules from
a given input-output dataset using supervised learning.
Typically, in supervised learning problems, access to large
labeled training datasets improves the performance of the
devised algorithms by overcoming noise and adding robustness
and generalization to unseen examples. Even though, large
amounts of data are available and could be used for learning, in
many applications, this data is typically labeled ambiguously
and at a coarse level. In fact, labels, or tags, tend to be associ-
ated with collections of samples rather than single samples. For
example, in image annotation, tags could be used as indicators
of the existence of objects of interests within the images (sky,
sea, beach,. . . ). However, the exact location of those objects is
not available and is too tedious to extract for large collection

of images. An alternative and a relatively new framework
of learning that tackles the inherent ambiguity better than
supervised learning, is the Multiple Instance Learning (MIL)
paradigm [5]. Unlike standard supervised learning, in MIL,
an example is not a simple data point, but a collection of
instances, called a bag. Each bag can contain a different
number of instances. A bag is labeled negative if all of its
instances are negative, and positive if at least one of its
instances is positive1. Positive bags can encode ambiguity since
the instances themselves are not labeled. Given a training set
of labeled bags, the goal of MIL is to learn a concept that
predicts the labels of training data and generalizes to predict
the labels of testing bags [6].
To effectively take full advantage of the standard ANFIS
system in the context of MIL, bags need to be labeled at the
instances level by human experts to make learning possible [7].
Unfortunately, this process is tedious, ambiguous, subjective,
and prone to errors. To address this major limitation, we
introduce an adaptive neuro-fuzzy architecture that is designed
to handle reasoning with bags of instances as input and
capable of learning from ambiguously labeled data. The new
architecture is called Multiple Instance-ANFIS (MI-ANFIS).
The rest of this paper is organized as follows. Section II
describes the architecture of the proposed MI-ANIFS, and a
corresponding learning algorithm is introduced in Section III.
Section IV presents the experimental results on a synthetic
and benchmark data sets. Finally, we provide the conclusions
in section V.

II. MI-ANFIS ARCHITECTURE

In the following, let Bp be a bag of Mp instances with the
jth instance denoted as xpj . xpj is in turn a D dimensional
vector with elements xpjk corresponding to features, i.e.,

Bp =


xp11 xp12 . . . xp1D
xp21 xp22 . . . xp2D

...
...

. . .
...

xpMp1 xpMp2 . . . xpMpD

 . (2)

Note that the number of instances can vary between bags (Mp

depends on Bp). A bag is labeled positive if at least one of
its instances is positive, and negative if all of its instances are
negative.

1Note that positive bags may also contain negative instances.



R1(Bp) :

Mp∨
j=1

( If xpj1 is A11 and is A12, . . . , and xpjD is A1D), then f1 = C(xp1 · b1, xp2 · b1, . . . ,xpMp
· b1)

R2(Bp) :

Mp∨
j=1

( If xpj1 is A21 and is A22, . . . , and xpjD is A2D), then f2 = C(xp1 · b2, xp2 · b2, . . . ,xpMp
· b2)

(1)

Fig. 1. Architecture of the proposed multiple instance Adaptive Neuro-Fuzzy Inference System

We introduce our MI-ANFIS for the simple case of two rules.
Equation (1) describes the MI-ANFIS with two Sugeno rules.
Here, Aik is a fuzzy set associated with the kth instance feature,
and “

∨
” is a joint operator that can be any T-conorm (or, max,

sum, etc.). bi = bi0, ..., b
i
D is a set of polynomial coefficients.

The premise part of the rule is evaluated as in the ANFIS
case. To evaluate the consequent part, first the linear response
of each instance is computed, i.e., xpj ·bi. Then, a function C
is used to compute the final output by combining the instances’
responses. Many functions could be used and the choice should
be domain-specfic. For instance, the “max” function has been
used in many applications.
Figure 1 illustrates the proposed MI-ANFIS architecture, the
upper part and lower part of the network correspond to the first
and second fuzzy rules. As in the traditional ANFIS, nodes at
the same layer have similar functions. We denote the output
of the ith node in layer l as Ol,i

Layer 1 is an adaptive layer, it calculates the degree to
which a given input instance satisfies a quantifier
A. Every node evaluates the membership degree
of an input instance in the fuzzy set Ak,j of
membership function µAk,j

. Generally, µAk,j
is

a parameterized membership function (MF), for
example a Gaussian MF with

µAk,j
(x) = exp(

−(x− ckj)2

2σkj2
). (3)

In (3), ckj and σkj are the mean and variance of
the gaussian function, and are referred to as the
premise parameters.

Layer 2 is a fixed layer, every node computes the product
of all incoming inputs. In the context of multiple
instance fuzzy logic, layer 2 evaluates the degree
of truth of proposition instances, or simply, “truth
instances”. The output of this layer is

O2,i = r⌈
i/Mp

⌉
,i[Mp]

=

D∏
j=1

µA⌈
i/Mp

⌉
,j

(xp,i[Mp],j),

(4)
where

⌈⌉
is a ceiling operator, and i[Mp] is i mod

Mp. As in the traditional ANFIS, any T-norm can
be used as the node function in this layer.

Layer 3 is a new addition when compared to the tradi-
tional ANFIS. Every node aggregates the truth
instances of the previous layer by means of a
smooth T-conorm. In this paper, we use a smooth
approximation of the “max” T-conorm known as
the “softmax” function (Sα):

softmaxα(x1, x2, . . . , xn) =

Sα(x1, x2, . . . , xn) =

n∑
i=1

xi · eαxi∑n
j=1 e

αxj
. (5)

In (5), as pointed by Maron in [8], the parameter
α determines how closely softmax approximates
the max operator. As α approaches∞ , softmax’s
behavior approaches max. When α = 0, it calcu-
lates the mean. As α approaches −∞, softmax’s
behavior approaches the min operator.
The outputs of this layer are the firing strength of



the multiple instance fuzzy rules defined by layers
1 through layer 3. i.e.,

O3,i = wi = Sα({ri,j}
Mp

j=1), (6)

where α is a fixed constant. Layer 3 is also a fixed
layer.

Layer 4 is a fixed layer. Every node labeled N of this layer
calculates the normalized firing strength of each
rule:

O4,i = wi =
wi∑|O3|
j=1 wj

, (7)

where |O3| is the number of rules.
Layer 5 is an adaptive layer. Every node i in this layer

computes the output of the i’th multiple in-
stance rule. Because our MI-ANFIS is function-
ally equivalent to the a multiple instance Sugeno
fuzzy inference system, the output of each rule
will be computed using the combining function

O5,i = C(xp1 · bi, xp2 · bi, . . . ,xpMp
· bi), (8)

where xpj = {xp,j,1, . . . , xp,j,D} for j =
1, . . . ,Mp, and bi = {bi0, ..., biD} is a set of
polynomial coefficients. The parameters {bi}|O3|

i=1
are referred to as the consequents parameters.
The only constraint on C is it has to be a smooth
function to allow for optimization techniques to be
applied. In the following, we choose “softmax” as
the combining function for this layer. In this case
(8) is equivalent to:

O5,i = wiSα(xp1 · bi, xp2 · bi, . . . ,xpMp · bi),
(9)

note that the constant α here is not necessary the
same as in Layer 3.

Layer 6 is a fixed layer with a single node labeled Σ. As
in the traditional ANFIS, it computes the overall
output of the system using

O6,1 =

|O3|∑
i=1

O5,i =

|O3|∑
i=1

wiSα(xp1 · bi, xp2 · bi, . . . ,xpMp
· bi).

(10)

III. BASIC LEARNING ALGORITHM

To identify the parameters of the proposed MI-ANFIS
network, we propose a variation of the basic learning algorithm
presented by Jang [9]. Our variation is different from the
ANFIS standard backpropagation learning rule due to the
additional layers our network introduced, as well as the use of
new activation functions at the nodes level, such as “softmax”.

A. BackPropagation Learning Rule

In the following, we assume that we have N training bags,
B = {Bp | p = 1, . . . , N}, and their corresponding labels
T = {tp | p = 1, . . . , N}.
First, for the pth training bag, we compute a squared error

measure commonly used in the backpropagation algorithm and
defined as

Ep = (tp −Op)2, (11)

In (11), tp is the desired bag output, and Op is the computed
output of the network when presented with training bag p.
Equation (11) demonstrates the need for MI-ANFIS. In fact,
due to the absence of instances’ labels, errors can be computed
only at the bag level. Errors at the instance level cannot be
computed and are not needed as we will show later.
The overall error measure of the network is

E =

N∑
p=1

Ep. (12)

To develop the gradient descent optimization on E, we
compute the error rate for the pth training bag and for each
node output Ol,i. This error rate εl,i (1 ≤ l ≤ 6 indicates the
MI-ANFIS layer) is defined as

εl,i =
∂Ep
∂Ol,i

. (13)

The error rate at the output node is given as following

ε6,1 =
∂Ep
∂O6,1

=
∂Ep
∂Op

= −2(tp −Op). (14)

For non-output nodes (i.e. internal nodes, l < 6), we derive
the error rate using the chain rule

εl,i =
∂Ep
∂Ol,i

=

Card(l+1)∑
h=1

∂Ep
∂Ol+1,h

∂Ol+1,h

∂Ol,i
, (15)

where Card(l+ 1) refers the number of nodes at layer l+ 1.
Next, we seek to minimize the network error with respect to
the premise parameters {ckj , σkj | 1 ≤ k ≤ |O3|, 1 ≤ j ≤ D},
and with respect to consequents parameters {bi}|O3|

i=1 .
The error rate with respect to a generic parameter θ can be
computed using

∂Ep
∂θ

=
∑
O∗∈S

∂Ep
∂O∗

∂O∗

∂θ
, (16)

where S is the set of nodes whose outputs depend on θ.
Using(12), the total error rate is given by

∂E

∂θ
=

N∑
p=1

∂Ep
∂θ

. (17)

1) Update Rule For Premise Parameters: First we compute
the error rate for the premise parameters ckj and σkj . We have

∂Ep
∂ckj

=

Mp∑
i=1

∂Ep
∂O(1,i+[(k−1)D+(j−1)]Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)

∂ckj
.

(18)



and,

∂Ep
∂σkj

=

Mp∑
i=1

∂Ep
∂O(1,i+[(k−1)D+(j−1)]Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)

∂σkj
.

(19)

Using the chain rule defined in (15), it can be shown that

∂Ep
∂ckj

=

−2(tp−Op)×Sα(xp1·bk, xp2·bk, . . . ,xpMp ·bk)×
∑|O3|
l=1 wl − wk(∑|O3|

l=1 wl

)2

×
Mp∑
i=1

[
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1+α

(
rk,(i+(k−1)Mp)−Sα({rk,m}

Mp

m=1)
)]

×
D∏

d=1,d 6=j

µA(⌈
(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)
×

(x(p,(i+(k−1)Mp)[Mp],j) − ckj)
σ2
kj

× exp(−
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2
kj

)

]
. (20)

As in the standard ANFIS, an update formula for the parameter
ckj is given by

4ckj = −η ∂E
∂ckj

, (21)

where η is a learning rate determined in a similar manner to
that of standard backpropagation algorithm [9].

The update formula for σkj can be derived in a similar
manner. It can be shown that

∂Ep
∂σkj

=

−2(tp−Op)×Sα(xp1·bk, xp2·bk, . . . ,xpMp
·bk)×

∑|O3|
l=1 wl − wk(∑|O3|

l=1 wl

)2
×
Mp∑
i=1

[
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1+α

(
rk,(i+(k−1)Mp)−Sα({rk,m}

Mp

m=1)
)]

×
D∏

d=1,d 6=j

µA(⌈
(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)

×
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

σ3
kj

× exp(−
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2
kj

)

]
. (22)

And the update formula for σkj is as follows

4σkj = −η ∂E
∂σkj

, (23)

where η is the same learning rate as in (21)

Equations (21) and (23) can be used to update ckj and σkj
parameters either on-line, bag by bag ( we want to emphasis
here that the on-line learning is not achieved instance by
instance, but rather bag by bag), or after presentation of the
entire data set. This later mode of learning is known as batch-
learning or off-line learning. Next, we develop the update rules
for the consequents parameters.

2) Update Rule For Consequents Parameters: The error
rate for the consequent parameters {bi = {bi0, ..., biD}, i =
1 . . . |O3|} is defined as

∂Ep
∂bi

=
(∂Ep
∂bi0

,
∂Ep
∂bi1

, . . . ,
∂Ep
∂biD

)
. (24)

where,

∂Ep
∂bij

=
∂Ep
∂O(5,i)

∂O(5,i)

∂bij
, for j = 1, . . . , D. (25)

Using the previously defined chain rule in (15), it can be
shown that the overall error rate with respect to the consequent
parameter bij is given according to (17) as follows

∂E

∂bij
=

N∑
p=1

∂Ep
∂bij

=

N∑
p=1

wi

Mp∑
m=1

[
1(∑Mp

h=1 exp(α(xph · bi − xpm · bi))
)2

×
[(
xpmj

Mp∑
h=1

exp(α(xph · bi − xpm · bi))
)

−
(
xpm·bi

Mp∑
h=1

exp(α(xph·bi−xpm·bi)α(xphj−xpmj))
)]]

.

(26)

Hence, the update formula for consequent parameter bij

4bij = −η ∂E
∂bij

, (27)

where η is the same learning rate as in (21)

Equation (27) will be used to update bij either on-line or
off-line, depending on the MI-ANFIS implementation.

So far, we have derived all necessary update formulas for
the MI-ANFIS premise and consequent parameters. Next, we
present our MI-ANFIS basic learning algorithm. It is an itera-
tive algorithm that involves successive updates of the premise
and consequent parameters. It is summarized in Algorithm 1.



Algorithm 1 MI-ANFIS Basic Learning Algorithm
Inputs: B: the set of training bags.

T : the set of training labels.
M : the number of instances in each bag.
α: the constant used in the “softmax” function.
η: the learning rate.
e: number of epochs.

Outputs: bi: the sets of consequent parameters.
ci: the set of membership functions’ centers.
σi: the set of membership functions’ widths.

Initialize bi, ci, and σi.
repeat

Update bi using (27).
Update ci using (21).
Update σi using (23).

until parameters do not change significatively or number of
epochs is exceeded
return bi, ci, σi

IV. EXPERIMENTAL RESULTS

In the following, we report on the experiments conducted
to validate the proposed MI-ANFIS. First, we use a synthetic
data set to show the potential of MI-ANIFS to learn concepts
from ambiguously labeled data. Later, we apply our method
to benchmark data sets commonly used in MIL problems and
report results.

A. Synthetic Data

We use a simple synthetic dataset to illustrate the potential
of using MI-ANIFS to learn concepts from ambiguously
labeled data. For this purpose, we generated a synthetic dataset
from a distribution of two positive concepts, marked with black
and red squares in Figure 2 (the concept points are unknown
to MI-ANFIS). From each positive concept we generated 50
bags. We also generated 50 negative bags randomly from non
concept regions. Each bag has up to 10 instances. The data
is shown in Figure 2. Instances from negative bags are shown
as blue letters, and instances from positive bags are shown
in red or black letters depending on the underlying concept.
Instances from the same bag are displayed using the same
letter. In Figure 2, we highlight one bag from Concept 1 by
circling all of its instances. As it can be seen, one instance
is close to the dense red region (positive concept) while the
other instances are scattered around. Positive bags are assigned
a labeled of 1, and negative bags are labeled with zeros.
In the following, for the purpose of demonstration we apply
only update equations of the premise parameters during the
training epochs, and show that the MI-ANFIS Basic Learning
Algorithm (Algorithm 1) is capable of identifying positive
concepts as well as their corresponding multiple instance fuzzy
rules. To initialize the premise parameters, we use the FCM
[10] algorithm to partition the instances’ space into 4 clusters2.
We use the clusters’ centers as initial centers for the Gaussian
MFs, and we initialize all standard deviation parameters to a
default value of 0.5.

2A grid or manual partitioning could also be used

Fig. 2. Instances from positive and negative bags drawn from data that have
2 concepts

The initial fuzzy sets (MFs) of the rules’ premise parts be-
fore training are displayed in Figure 3(a). Updated parameters
after 20 training epochs are shown in Figure 3(b), and learned
fuzzy sets after convergence are shown in Figure 3(c).

As it can be seen, the algorithm has identified the two
true concepts showing that MI-ANFIS can efficiently learn
from partially labeled data. More importantly, the system has
correctly identified the positive concepts, and at the same
time identified irrelevant rules (MI-Rule 1 and MI-Rule 3
marked with red crosses in Figure 3(c)). After training, it
is recommended to detect and prune such rules to improve
MI-ANFIS testing efficiency. This can be achieved by setting
a minimum acceptable fuzzy sets support below which rules
containing the set are considered irrelevant.

B. Benchmark Datasets

To provide a qualitative evaluation of the proposed MI-
ANFIS, we apply it to five benchmark data sets commonly
used to evaluate MIL methods. The data sets are namely the
MUSK1, MUSK2 [11], and Fox, Tiger, and Elephant from the
COREL data set [12]. MUSK1 and MUSK2 data sets consist
of descriptions of molecules and the object is to classify
whether a molecule smell musky [13]. In these data sets,
each bag represents a molecule. Instances in a bag represent
the different low-energy conformations of the molecule. Each
instance consists of 166 features. MUSK1 has 92 bags, of
which 47 are positive, and MUSK2 has 102 bags, of which
39 are positive. The other data sets from COREL: Fox,
Tiger, and Elephant, classify whether an image contains the
corresponding animal. Each data set consists of 200 images
(bags): 100 positive images containing the target animal and
100 negative images containing other animals. Each image is
represented as a set of patches (instances) and each patch is
in turn represented by 230 features describing color, texture
and shape information. Table I summarizes the characteristics
of the five data sets. It is to be noted that for each benchmark
data set, PCA was applied to reduce the dimensionality of the
features in order to speedup MI-ANFIS training and increase
the interpretability of the generated multiple instance fuzzy
rules.
For all experiments, we construct a zero-order MI-ANFIS



(a) Initial MFs before starting the training process.

(b) Input MFs during MI-ANFIS training (Epoch number 20).

(c) Learned MFs after convergence of MI-ANFIS training algorithm. Rules
marked with red crosses are considered vanished and are pruned. Remaining
rules (MI-Rule 2 and MI-Rule 4) correctly describe the positive concepts of the
dataset

Fig. 3. Input MFs before, during, and after MI-ANFIS training.

TABLE I. BENCHMARK DATA SETS

Data set dim.(PCA) No. Bags Positive Negative No.Instances

MUSK1 166(25) 92 47 45 2→ 40

MUSK2 166(25) 102 39 63 1→ 1044

Fox 230(10) 200 100 100 2→ 13

Tiger 230(10) 200 100 100 1→ 13

Elephant 230(10) 200 100 100 2→ 13

(constant consequent parameters) having 15 multiple instance
rules, and employing Gaussian MFs to describe the input
fuzzy sets. For initialization, we use the FCM algorithm to
cluster the instances of the positive bags into 15 clusters, and
we initialize MFs’ centers as the clusters centers. Table II
summarizes all parameters used in training the MI-ANFIS.
We note that the reason behind using large standard deviations
For MUSK1, MUSK2, and FOX datasets is to allow the

TABLE II. MI-ANFIS TRAINING PARAMETERS

Parameter MUSK1 MUSK2 FOX Tiger Elephant

No. of MI Rules 15 15 15 15 15

No. of Inputs 25 25 10 10 10

MF’s σ 100 100 100 10 10

Output parameters 1s 1s 1s 1s 1s

Softmax’s α 1 1 1 1 1

Learning rate 0.1 0.1 0.1 0.1 0.1

TABLE III. COMPARISON OF MI-ANFIS PREDICTION ACCURACY (IN
PERCENT) TO OTHER METHODS ON THE BENCHMARK DATA SETS.

RESULTS FOR 3 TOP PERFORMING METHODS ARE SHOWN IN BOLD FONT.

Algorithms MUSK1 MUSK2 Fox Tiger Elephant

MI-ANFIS 93.49 90.58 66.4 84.5 86.97
±0.76 ±1.31 ±2.77 ±0.61 ±1.10

MILES [14] 86.3 87.7 N/A N/A N/A

APR [11] 92.4 89.2 N/A N/A N/A

DD [8] 88.9 82.5 N/A N/A N/A

DD-SVM [15] 85.8 91.3 N/A N/A N/A

EM-DD [16] 84.8 84.9 56.1 72.1 78.3

Citation-KNN [17] 92.4 86.3 N/A N/A N/A

MI-SVM [12] 77.9 84.3 57.8 84.0 81.4

mi-SVM [12] 87.4 83.6 58.2 78.4 82.2

MI-NN [18] 88.0 82.0 N/A N/A N/A

Bagging-APR [19] 92.8 93.1 N/A N/A N/A

RBF-MIP [20] 91.3 90.1 N/A N/A N/A
±1.6 ±1.7

BP-MIP [21] 83.7 80.4 N/A N/A N/A

RBF-Bag-Unit [22] 90.3 86.6 N/A N/A N/A

MI-kernel [23] 88.0 89.3 60.3 84.2 84.3

PPPM-kernel [24] 95.6 81.2 60.3 80.2 82.4

MIGraph [23] 90.0 90.0 61.2 81.9 85.1
miGraph [23] 88.9 90.3 61.6 86.0 86.8
ALP-SVM [25] 86.3 86.2 66.0 86.0 83.5

MIForest [26] 85.0 82.0 64.0 82.0 84.0

Naive-ANFIS 67.82 79.43 N/A N/A N/A
±4.04 ±5.04

initial rules to cover the entirety of the input space.

After initialization, we run MI-ANFIS basic learning al-
gorithm (Algorithm 1) to jointly learn a fuzzy description of
positive concepts as well as the optimal multiple instance rules’
output.

Table III shows the performance of the proposed algorithm
on the benchmark data sets. MI-ANFIS was trained and tested
using ten fold cross validation. The performance is reported
in terms of prediction accuracy (% of correct ± standard
deviation).
To show the advantage of using MI-ANFIS over the tradi-
tional ANFIS we compare its performance to the later on the
benchmark data sets. Given that ANFIS cannot learn from
ambiguously labeled data, for sake of comparison, we consider
the naive MIL assumption where all instances from positive
bags are considered positive and all instances from negative
bags are considered negative. We refer to this implementation
as Naive-ANFIS. An empirical comparison with other MIL
methods is also reported.
Overall, MI-ANFIS achieved state of the art performances.
On all tested data sets, MI-ANFIS ranked consistently among



the top three. For MUSK1, PPPM-kernel [24] performed the
best (95.6%), but did not perform as well for the other sets.
For MUSK2 Bagging-APR [19] achieved the best accuracy, as
reported by [14], Bagging-APR excellent performance is cred-
ited to the use of an ensemble scheme to the base learner APR
[11]. MI-ANFIS achieved the best average performance for the
Fox and Elephant data sets, and second best performance after
the miGraph [23] and ALP-SVM [25] methods for the Tiger
data set. It is clear from Table III that Naive-ANFIS performed
the worse, this is basically due to the naive MIL assumption.
In cases where more information about instances is available,
such information could be used to relax the naive assumption
by assigning better labels at the instances’ level, and could
lead to better ANFIS (standard) performance.

C. Discussion

Fuzzy logic is powerful at modeling knowledge uncertainty
and measurements imprecision [27]. More generally, it is
one of the best frameworks to model vagueness. However,
in addition to uncertainty and imprecision, there is a third
vagueness concept that fuzzy logic does not address quiet well.
This vagueness concept is due to the ambiguity that arises
when the data have multiple forms of expression, this is the
case for multiple instance problems. MI-ANFIS deals with
ambiguity by introducing the novel concept of truth instances:
when carrying reasoning using a bag of instances at Layer
2 (Figure 1), a proposition will not only have one degree
of truth, it will have multiple degrees of truth (rij), we call
truth instances. Thus, effectively encoding the third vagueness
component of ambiguity and increasing the expressive power
of traditional fuzzy logic.
Learning positive concepts from ambiguously labeled data has
been the core task of various MIL algorithms (e.g. Diverse
Density [8]). MI-ANFIS has proven that it can learn positive
concepts effectively while jointly providing a fuzzy represen-
tation of such regions. The fuzzy representation is combined
into meaningful and simple multiple instance rules that can
be easily visualized and interpreted. The fuzzy representation
also offers the advantage of robustness against noise points
that might happen to be close to positive concepts without
being necessarily positive. Thus, lowering the amount of false
positives. MI-ANFIS is fully independent. It does not require
positive concepts to be learned using a different algorithm (e.g.
Diverse Density [8]), or based on intuition. Moreover, MI-
ANFIS does not rely on any traditional MIL algorithms and
can learn its rule base from data.

V. CONCLUSIONS

In this paper, we presented MI-ANFIS, an novel neuro-
fuzzy architecture that extends the standard Adaptive Neuro-
Fuzzy Inference System (ANFIS) to reason with bags of
instances in order to solve multiple instance learning problems.
We developed a BackPropagation learning algorithm using a
thoroughly and abstract mathematical formulation and showed
that the proposed system is capable of learning meaningful
concepts from ambiguously labeled data. We reported on the
performance of the proposed algorithm using a synthetic and
five benchmark data sets, in different scenario MI-ANFIS
showed promising results.
In future work, we intend to develop a hybrid learning al-
gorithm that combines a gradient method and a least squares

estimator (LSE), in order to speedup MI-ANFIS training. We
will also report on the complexity of the developed training
algorithms.
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